Scale Up of SECA Based Fuel Cell Technology for Large Scale Hybrid Power Systems

W.P. Teagan Jan Thijssen

2nd DOE/UN International Conference and Workshop on Hybrid Power Systems
April, 2002

Arthur D Little

Outline

Background

Methodology

Results:

- System Design
- Performance
- Cost

Conclusions/Implications for Fuel Cell Hybrids

Background

Application of stack modules to larger capacity applications is key to SECA's strategy.

- Develop ~5 kW SOFC modules for mass-customization
- Small-capacity applications (1-5 stacks), including:
 - Residential / light commercial DG
 - Auxiliary power for vehicles
 - Remote power
- Larger capacity applications:
 - Large commercial / industrial DG (10-1000s stacks)
 - Sub-station level DG and central generation (synergy with Vision21 program)
- How to scale-up to hundreds of kW or MW?

SECA wanted to understand the issues involved in scaling up to 100-kW to 1-MW systems.

Study Objectives

Objective: to assess whether and how SECA stack modules can be integrated into a 250 kWe plant.

- Develop thermodynamic design, system lay-out, performance estimate, and cost estimates
- SOFC stack:
 - Use 5 kW planar SOFC modules *
 - Combine into super-modules
 - Implications for electric interconnection of the units?
 - Implications for manifolding?
- Balance of plant:
 - Determine scale and integration
 - Impact of scale-up on system performance and cost?
- Simple-cycle operation

System Specifications

We developed a conceptual design for a 250-kW $_{\rm e}$ distributed generation system SOFC.

System Specifications

- System output: 250-kW_e net @ 380V 3-phase
 AC
- Electrical system efficiency >50% (LHV)
- ◆ Availability >99%
- ◆ T_{Surface}< 45°C
- High production volume (10,000 units per year)

Assumptions		
Stack	Balance of Plant	
 5 kW modules Cell voltage 0.7 V Anode-supported technology T_{stack} 650 - 800°C Power density 0.6 W/cm² 85% fuel utilization per pass in fuel cell 	 Water supplied (no water recovery) Steam reformer Natural gas fuel, (20" H₂O gauge) 	

Application to Fuel Cell Hybrids

The current program will develop much of the information needed to analyze fuel cell hybrid technology strategies:

- System schematics/layouts of simple cycle architectures
- Reactant flow conditions at each point in the cycle:
 - temperature levels
 - flow rates
 - reactant chemistries
 - pressure levels (for near atmospheric systems)
- Performance model which can be modified to pressurized operation and integration with hybrid hardware

We developed a conceptual system design, to assess implications of manifolding and interconnection.

We limited integration to the reformer and air preheaters, to maintain reasonable access.

Thermodynamic Model Results

With careful thermal integration, a system efficiency of 51% can be achieved in simple-cycle configuration.

Anode Fuel Utilization	85%
Fuel Cell, Cell Voltage	0.7 V
Stack Temperature	650 - 800°C
Cathode Excess Air (for Cooling)	7.7 times
Blower Pressure	1.17 bar
Exhaust Temperature	177ºC
Parasitic Loads	19 kW
Required Fuel Cell Gross Power Rating	269 kW
Resultant Overall Efficiency	51%

Extensive energy recovery from hot exhaust gas is critical to achieving high system efficiency.

Conclusions (1)

Integration of SECA modules can result in cost-effective highperformance larger-scale systems.

- Integration of over fifty stacks appears feasible:
 - Several manageable configurations identified
 - Manifolding and interconnection losses acceptable
 - Cost savings in balance of plant
- High-efficiency simple-cycle plant appears feasible, and result in attractive cost (\$500 - \$600/kW equipment cost)
 - Lower-efficiency, lower-cost systems may be more flexible in operation and preferable in some situations
- Cost and performance would be attractive
 - In the 250 kW system, benefits of economy of scale are largely offset by lower production volumes compare to 5 kW systems

Implication of Hybrid Operation

The 250 kW simple cycle design is a good starting point for consideration of fuel cell hybrid options -- the issues will include:

- The impact on stack design of pressurized operation.
- The optimal integration of reactant gas flows to (for example, use of unspent reactants in anode gas stream)
- The sensitivity of hybrid system performance to stack operating temperatures
- The impact of internal reforming and excess air levels on system level optimization
- The lowest cost design strategies for 1+ MW capacity systems -- example: multiple 250 kW systems combined with a single turbine/compressor

